Neural control of renal medullary perfusion.

نویسندگان

  • Gabriela A Eppel
  • Simon C Malpas
  • Kate M Denton
  • Roger G Evans
چکیده

There is strong evidence that the renal medullary circulation plays a key role in long-term blood pressure control. This, and evidence implicating sympathetic overactivity in development of hypertension, provides the need for understanding how sympathetic nerves affect medullary blood flow (MBF). The precise vascular elements that regulate MBF under physiological conditions are unknown, but likely include the outer medullary portions of descending vasa recta and afferent and efferent arterioles of juxtamedullary glomeruli, all of which receive dense sympathetic innervation. Many early studies of the impact of sympathetic drive on MBF were flawed, both because of the methods used for measuring MBF and because single and often intense neural stimuli were tested. Recent studies have established that MBF is less sensitive than cortical blood flow (CBF) to electrical renal nerve stimulation, particularly at low stimulus intensities. Indeed, MBF appears to be refractory to increases in endogenous renal sympathetic nerve activity within the physiological range in all but the most extreme cases. Multiple mechanisms appear to operate in concert to blunt the impact of sympathetic drive on MBF, including counter-regulatory roles of nitric oxide and perhaps even paradoxical angiotensin II-induced vasodilatation. Regional differences in the geometry of glomerular arterioles are also likely to predispose MBF to be less sensitive than CBF to any given vasoconstrictor stimulus. Failure of these mechanisms would promote reductions in MBF in response to physiological activation of the renal nerves, which could, in turn, lead to salt and water retention and hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 1 neuropeptide Y receptors and 1-adrenoceptors in the neural control of regional renal perfusion

Eppel, Gabriela A., Susan E. Luff, Kate M. Denton and Roger G. Evans. Type 1 neuropeptide Y receptors and 1-adrenoceptors in the neural control of regional renal perfusion. Am J Physiol Regul Integr Comp Physiol 290: R331–R340, 2006. First published September 29, 2005; doi:10.1152/ajpregu.00317.2005.—The aim of this study was to determine the contribution of neuropeptide Y (NPY) Y1 receptors in...

متن کامل

Importance of the renal medullary circulation in the control of sodium excretion and blood pressure.

The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure...

متن کامل

Type 1 neuropeptide Y receptors and alpha1-adrenoceptors in the neural control of regional renal perfusion.

The aim of this study was to determine the contribution of neuropeptide Y (NPY) Y1 receptors in neurally mediated reductions in renal medullary perfusion. In pentobarbital sodium-anesthetized rabbits, electrical stimulation of the renal nerves (RNS, 0.5-16 Hz) decreased renal perfusion in a frequency-dependent manner. Under control conditions, 4 Hz reduced cortical and medullary perfusion by -8...

متن کامل

Renal sympathetic neuroeffector function in renovascular and angiotensin II-dependent hypertension in rabbits.

We tested the hypotheses that the gains of specific renal sympathetic neuroeffector mechanisms are altered in secondary hypertension and that the nature of these alterations depends on the precise experimental setting of the kidney. Rabbits were sham operated, or made comparably hypertensive (mean arterial pressure increased 17% to 24%) by clipping the left or right renal artery or by chronic i...

متن کامل

Altered responsiveness of the kidney to activation of the renal nerves in fat-fed rabbits.

We tested whether mild adiposity alters responsiveness of the kidney to activation of the renal sympathetic nerves. After rabbits were fed a high-fat or control diet for 9 wk, responses to reflex activation of renal sympathetic nerve activity (RSNA) with hypoxia and electrical stimulation of the renal nerves (RNS) were examined under pentobarbital anesthesia. Fat pad mass and body weight were, ...

متن کامل

Effects of renal medullary and intravenous norepinephrine on renal antihypertensive function.

Increasing renal arterial pressure activates at least 3 antihypertensive mechanisms: reduced renin release, pressure natriuresis, and release of a putative renal medullary depressor hormone. To examine the role of renal medullary perfusion in these mechanisms, we tested the effects of the infusion of norepinephrine, either infusion into the renal medullary interstitium or intravenous infusion, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical and experimental pharmacology & physiology

دوره 31 5-6  شماره 

صفحات  -

تاریخ انتشار 2004